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ABSTRACT

" This Semiannual Technical Summary reports work in the Distributed Sensor
Networks program for the period 1 April through 30 September 1980. Prog-
ress related to development and deployment of test-bed hardware and soft-
ware, including deployment of three test-bud nodes, is desceribed. A com-
plete algorithm chain from raw data to aircraft locations, employing two
acoustic arrays, has been developed and demonstrated experimentally using
data collected from test-bed nodes. A strawman design for a new multiple
microprocessor test-bed node computer is presented. Alsc described is

I

progress in the design and development of a real-time network kernel for
the DSN test bed in general, and the new processor in particular.
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DISTRIBUTED SENSOR NETWORKS

1. INTRODUCTION AND SUMMARY

This Semiannual Technical Summary (SATS) for the Distributed Sensor Networks (DSKN)
program reports research results for the period 4 April through 30 September 1980. The DSN
program is aimed at developing and extending target surveillance and tracking technology in
systems that employ multiple spatially distributed sensors and processing resources, Such a

DSN would be comprised of sensors, data bases, and processors distributed throughout an area
and interconnected by an appropriate digital-data communication system, It would serve users

who are also distributed within the area and serviced by the same communication system. Of

particular interest is the case when individual sensors cannot view the entire surveillance area
and when they can individually generate only limited information about targets ir their field of
view. The working hypothesis of the DSN program is that, through suitable netting and distrib-
uted processing, the information from many such sensors can be combined to yield effective and
serviceable surveillance systems. Surveillance and tracking of tow-flying aircraft, including
cruise missiles, using sensors that individually have limited capabilities and limited fields of
view, has been selected to develop and evaluate DSN concepts in the light of a specific system
problem, The research plan is to investigate these concepts and to develop a DSN test bed which
will make use of multiple small acoustic arrays to detect and track low-flying aircraft.

Progress in the development and deployment of the test bed at Lincoln Laboratory is reported
in Sec.Il. This effort includes modifications to node designs, deployment of additional nodes,
work on providing wire communication between nodes and a monitor and control computer, prep-
arations for mobile nodes, further develooment of the real-time kernel for the nodes, and work
on developing a real-time signal-processing capability for the nodes.

The first data-acquisition node located on the Laboratory's Building L has been retrofitted
to improve performance and ease of use. The physical array was reconfigured using individual
tripod mounts for the microphones. The system was modified to improve its ability to resist
outdoor conditions for long periods of time and to allow complete operation of the system from
inside. Calibration, audio-communication, and audio-recording features were added to improve
ease of operation, improve experimental control, and provide better experiment documentation.
A second node, identical to the retrofitted L node, was constructed and deployed with the array
being on the roof of Building J in the main Laboratory complex. A third array, with an exper-
imental rigid but easily configured frame holding microphones, has been deployed on the roof of
2 hangar at the Lincoln Flight Facility. Communication between the Flight Facility and the main
Laboratory is provided by 9600-baud short-haul modems with unloaded lines.

A new version of the real-time kernel (DAK) has been developed. It provides for limited
access to all the memory in a node and will be the basis for all real-time processing in the nodes
for the next several months., This real-time processing includes data collection and recording
on digital tape, for which drivers and other user software must still be converted to the new ker-
nel, and real-time signal processing which will involve a Floating Point Systems array processor
as well as the PDP-14/34 in each node. Progress on the development of real-time software to
control and make use of the array processor as weil as actual array-processor software is also
described in Sec. IL.
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Section III reports on data-collection activities involving known and controlled aircraft and
upon the successful development and experimental demonstration of a complete data-processing
chain from raw data through to two-site acoustic locations of aircraft. Also described are mod-
ifications and improvements to the Acoustic Data Analysis Program used for algorithm develop~
ment and experimental data processing. ’

Section IV reports on development of a REal-time NEtwork kernel (RENE) which is to be a
successor to DAK, and also on a strawman hardware design for multi~-microcomputer node ar-
chitectire which could be used to enhance test-bed node capabilities and would be a step toward
smaller, low-power nodes in the future. The software kernel is to be implemented for the ex-
isting PDP-11 node computers as well as for any multi-microcomputer system which might be
developed. It is a rual-time system being specifically designed for use in a distributed multi-
computer, multi-node environment. The strawman hardware design is modular and can be used
to realize very powerful DSN nodes. It uses Motorola M68000 chips as the main processing el-
ement, zand incorporates many features related to reliability, maintainability, and ease of de-
bugging hardware. In order to decide how next to proceed, we are presently at a stage where
DSN requirements and the strawman design are to be reviewed in the light of commercially

available microcomputers,
Finally, miscellareous activities including interactions with other research groups, reloca-

tion of our physical facility within the Laboratory, and conversion to Version 7 UNIX are sum-
mal‘iied in &c: V.




II. TEST-BED DEVELOPMENT

Progress in the development and deplovment of hardware and software for the DSN iest bed
is reported in Secs. A through C below. Section A addresses hardware and deployment; Sec. B
deals with the real-time software kernel to support data acquisition and other real-time pro-
cessing; and Sec. C reports progress on the real-time signal-processing software for the de-
ployed nodes.

A. NODE HARDWARE AND DEPLOYMEXNT

The hardware configuration of the Lxta Acquisition System described in our previous SA I‘Si
has been significantly improved. In addition, fwo more microphone arrays have beer constructed
and installed on the roofs of two other Laboratory buildings. One of the new sites is within the
main Laboratory complex, and the other is remotely located at the Lincoln Flight Facility. We
now have a total of three DSN arrays in place for data-collection experiments. The two sites at
the main Laboratory complex are completely operational. [he third is awaiting deliveryof a
tape system and final checkout and deployment of the electronic racks at the Flight Faeility. Two
of the nodes contain FPS 120B array processors for future real-time signal processing. The
array processor for the third node is temporarily attached to onr PDP-14/70 research support
computer for software development purposes. Options for data communications between remote
nodes and the PDP-11/70 which also serves as our monitor and control computer have been in-
vestigsted, modems have been procured, and an initial 4-wire line with 9.6 kbits modem has
been installed between the existing remote site and the main Laboratory. Plans for mobile DSN
nodes bave been formulated, and are in the process of being reviewed and finalized. Additional
details are described in the following paragraphs.

The square and rigid array that was initially installed on the roof of the Laboratory's Build-
ing L has been reconfigured into three concentric equilateral triangles with a microphone placed
at each of the vertices. Figure iI-1 shows the configuration of the new array. The triangle base
dimensions are approximately 6, 2, and 0.75 m. This new configuration was adopted to improve
the spatial resclution and aliasing properties of the array over the 20- to 180-Hz band. The
larger aperture gives better resolution at the lower frequencies, while the small spacings near
the center avoid aliasing at the higher freguencies.

Separate supporis are used for cach microphone element of the new array. The metal tri-
pods chosen as the element supports are easy to erect and align. The use of separate supports
for each element allows easy reconfiguration as long as the array is deployed on a reasonably
flat surface. Figure 11-2 shows the physical construction of the new tripod array. There is now
one such array located on the roof of Building L. where the original data-acquisition array was
iocated and a second on the roof of Building J, also in the main Laboratory complex. Tke third
array on the roof of a hangar at the Lincoln Flight Facility has a different construction which is
described later in this section.

A new preamplifier protection circuit and power distribution system has been designed. The
originally deploved power supply consisted of non-rechargeable mercury batteries with individual
preamplifier protection relays for each channel. The power supply, including swiiches, relays,
and reset buttons, was located at the array, several hundred feet from the main electronics and
operator's position. In the new design, all controls and components — other than some connec~
tors and wires — have now been moved inside to the operator’s position. i
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Fig.ll1-1. Tri-delta microphone array configurstion. -




The new preamplifier power-supply design coniains rechargeable batteries and an integral g2

recharging system. The batteries consist of maintenance-iree, sealed, lead-acid cells which E

are capable of maintaining a charge that is adequate to power an array for 4 to 6 weeks. The £=
E=

racharge system built into these cells incorporates recombination of gases with a starved elee- =

trolyte system. Therefore, the batteries can be enclosed within a sealed contairer.
A second change in the power distribution system design involves the use of new pre-

i

amplifier protection circuits to replace the relays used in the initial design. The new circuit
is entirely solid state with an ad..stable current-limiting trip point to provide maximum pro-

tection of the microphone preamplifiers.

A multipair shielded ecable which extends from the operator’s position to the outside array
is used to provide power to all chantiels. It is comprised of 19 individually twisted pairs, sur-
rounded by a common shield, With the power supply and all controls now inside at the operator's

)

position, experiments can be conducted more conveniently and safely, independent of weather

) conditions. )
3 roviding remote power to the array necessitated the construction of a simple preamplifier/
] power-supply interface (PPI) which is to be located with the microphone array. The FII, shown
= in Fig.11-3, couples the power cable, preamplifier cables, and individual channel signal lines at
i the array. Power is distributed from the PPI to each preamplifier {located physizally at each

microphonel. The outvut of the preamplifiers is connected within the PPI to the proper signal

cable lines which terminate at the A/D hardware located inside at the operator's position.
pe po:

Fig.li-3. Preamplifier/power-supply interfuce units and calibration E
low=dspeaker to be located outside at microphone arrays.

H

i

ng three nodes contain temporary protoiype versions of the new power-supply

ceation of the prototype power supply in the node electronics racks is shown in
U'se of the prototype power supplies hus expedited node deployment and kas pro-

w gperational test bed for the final design. In the future, additional nodes will be con-

e PC boards to form a more reliable and easier-to-monitor final version of

tem. The present nodes will be retrofitted with the newer design.
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= As reported in the previous Si?iI‘S‘l measures were being taken to ensure that hardware ex~
g posed to the outside eénvironment would be weatherproof. The most critical areas are the con-

nectors where the signal lines, preamplifier lines, and power cable interface. In the initial

system, general-purpose three-pin audio plugs and receptacles were used on a temporary basis

due . very long lead times for connectors better adapted to outside use. A routine inspection
of the Building L array a few weeks after deployment revealed oxidation of the audio connectors.
Figure 1I-5 shows the condition of the preamplifier extension cable connectors after two months
of operation during the summer. The condition of these connectors reconfirmed the nced for
the better plugs and receptacles which had already been ordered. The conversion process for
the [irst array consisted of replacing all audic connectors with enviranmentally resistant,
shielded, pressure-locking elecirical connectors. Figure 1I-& shows a microphone, preampli-
fier, and preamplifier cable with the new connector affixed. The connector pairs consist of
4-pin plugs, with gold-plated contacts sealed in a vulcanized rubber insert, mounted on the
cables. and 4-pin bayonet losk receptacles with 3 similar insert, mounted on the preamplifier
power interface. The two new arrays have been built using the new conneciors and PPL

“éfs“s‘.{iﬁé, ;res::":siufie-*, and preamplifier cable
ed, pressure-iocking

33;?;:?.% from the first few data-collection experiments that Letter mis-
rol were necessary. Also. 2 method of gaickly and easily

confirming sys

rior 1o an experiment was required. i1 these functions were
support hardware to ihe nodes. Z’&’{@Gﬁm:ﬁe‘sﬁ?ﬁ

accomplished by
a cassette recorder, audio mixer, aircrafl traasceiver, lone marker, calibration meter, cali-
and loudspeaker. Figure Hi-4ia-b} shows the construction of the A/D hard-
. PDP-11/34 processor, array processor, iape drive, and power supply-

bration osci

ust to the left of the eguipment racks. The mixer, transceiver, angd
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tone marker are located in the voice communication interface. The calibration meter and oscil-
lator are located in the calibration section. The data-channel interface consists of interconnec-
tions between the calibration gection and the signal cables from the microphone preamplifiers
which are remotely located at the array. As shown in Fig.Il-7, the acoustic data flow is from
the data-channel interface, through the calibrator section, to the instrumentation amplifiers
which provide gain and anti-allas filtering through the gain-ranjed analog-to-digital (A/D) con-
verter and its digital interface, and to the PDP-11/34. With data-acquisition software running,
the PDP-11/34 accumulates buffers of data and causes data to ve stored on digital tape. When
real-time signal-processing software becomes available, the acoustic data wili flow from the
PDP-11/34 into the array processor and the reduced data from the array processor will be re-
turned to the PDP-11/34.

MULTI-CHANNEL [108788 -]
ANALOG DATA
FROM

MICROPHONE PREAMPLIFIERS

DATA - CHANNEL
INTERFACE

CALIBRATION
SECTION

INSTRUMENTATION
AMPLIFIERS

GAIN -RANGED
A/D

A/D DIGITAL
INTERFACE

POP -11/34

9 -TRACK FPS 120B
DIGITAL TAPE ARRAY PROCESSOR

MULTI-CHANNEL ACOUSTIC TIME SERIES
=== POWER PEAKS IN ELEVATION - AZIMUTH - FREQUENCY SPACE

Fig.1i-7. Primary data flow in a node.

Each operator can now communicate with the pilot, and with all other node operators using
the aircraft transceivers. This provides essential communication for conducting controlled ex-
periments, and also provides for an interim multi-node synchronization mechanism for starting
data runs. The audio cassette recorder and audio mixer are used to make an audio tape history
of all communications between the aircraft, the mission spotter located at the array, and all
other DSN node operators. One recording channel of the cassette is used for this purpose. In
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addition, a single audio channel of the microphone array is recorded on the other channel of the
cagsette recorder. This channel is easily reviewed and analyzed to aid in interpretation of the
digital data collected during an experiment.

The calibration oscillator and gain calibration meter which are part of the equipment at the
operator's position, and a loudspeaker which is installed at the array site as shown in Fig. I1I-3,
are used to do a quick continuity and calibration check of all channels just prior to an experi-
ment. The oscillator drives the loudspeaker with a specific calibration frequency. Each channel
is individually monitored using the gain meter to determine if the correct signal levels are being
received for the known signal level from the oscillator. Absolute calibration is occasionally
done manually by visiting each microphone with a special absolute calibrator. Iminediately after
such an absolute calibration, the loudspeaker is driven with a known signal level and the received
signal le\els are recorded for swbsequent quick calibration. The tone marker in the voice com-
munication interface circuit is controlied by the operator. When the tone marker is enabled, it
places a short tone burst on the audio tape and on a spare channel of the digital-data tape to in-
dicate a significant event. This is used to mark times when controlled experimental aircraft
pass checkpoints, and it is also used to manually provide synchronization information on data
tapes.

The DSN now consists of three arrays located in the vicinity of the main Laboratory complex.
In the near future, real-time processing of a portion of the data at the nodes is planned, with
transmission of reduced measurements back to the PDP~-11/70 where location and tracking will
be done. This will be the first of our real-time experiments. For the next several months, all
intercomputer communicaticns will be via transmission over either the dial-up telephone system
or leased (unloaded) 4-wire private-line metallic circuits. To this end, two pairs of short-haul
modems and a pair of long-haul modems have been obtained. At the present time, we plan to
connect the remote PDP-11/34 based nodes to the central PDP~11/70 via 9.6-kbaud circuits. The
link between the Lincoln Flight Facility node to the PDP-11/70 is operational. The line between
the Antenna Test Range and the PDP-11/70 is in the process of having the inductors removed so
that it will be compatible with the short-haul modems.

We are now in the process of developing mobile DSIi test~bed nodes which can be deployed
easily. This will allow for experiments with various node configurations and for experiments at
a variety of locations. Detailed specifications for a motor vehicle that will house all electronic
equipment for a mobile DSN node have been completed. The proposed vehicle will be a relatively
heavy-duty conventional truck and cab with a custom-designed body housing. The housing will
accommodate three 6-ft equipment racks, a desk with computer control terminal, electronic test
equipment, and operating personnel.

Primary AC power for the mobile-system electronic and electrical equipment will be sup-
plied by public utility sources w en available. Otherwise, a gasoline-driven 15-kW motor gen-
erator (MG) set will be used. The MG set will be installed on a shock-mounted platform to the
rear of the bedy housing on-board the vehicle.

The nature of DSN tests requires that ambient background-noise levels at the low end of the
audi- band be suppressed to enhance detection and tracking cof targets, In the mobile system,
the motor generator is a potential source of unwanted background noise. To suppress this noise,
the MG will be housed in a sound-attenuating enclosure and the sensor array will be positioned
approximately 300 m from the vehicle. If experiments indicate that generator sound levels are
still too large, we will add batteries and an inverter to facilitate quiet operation for short periods.

£ 0 gl

i

lutihtaee it

E |
=
=
E
%




=

To simplify the positionin r of the individual sensors of the array in the mobile systems, a
lightweight triangular framewo.k will be used. The framework is an erector~set design, and
can be assembled or disassembled in a matter of 20 to 30 min. The frame contains adjustable
legs with swivel foot pads to allcw leveling when set up on sloping or uneven surfaces. One of
these frames has been constructed and installed on the .oof of the Lincoln Flight Facility hangar
as shown in Fig.11-8. The microphone stations are attached to the framework by "U" bolt clamps
and, once correctly positioned, need not be readjusted even *hough the frame is disassembled
and reassembled at a.different location.
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Fig.11-8. Deployed tri-delta erector-set array at Flight Facility.
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2 B. SINGLE-PROCESSOR REAL-TIME KERNEL

For the l2st six months we have been running a Data Acquisition System (DAS) under Ver-

sion 1 of the Data Acquisition Kernel (DAK). Both DAS and DAK have been described in a previ-
2
ous SATS,

[

We now have under development a successor to DAK called the REal-time NEtwork kernel
(RENE) as described in our last SA'I‘S.i To produce RENE we split DAK into two parts: an
operating system independent part, called the Object Structured Discipline (OSD); and a part
containing communication, scheduling, and memory-mapping primitives called RENE. In the
last six months we have implemented the basic part of OSD, revised DAK to create DAK Ver-
sion 2 {or DAK2) which uses OSD, and pursued separately the design of RENE proper. DAK2 E

will support all test-bed experiments during the next several months while RENE is being
developed.

(it

In revising DAK into DAKZ we have brought all documentation up to date, provided for access
to more PDP-11 memory, and, by virtue of OSD, provided for easier possible conversion to
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other computers. In the near future, DAK2 will also provide improved communication services

between nodes and programs on the monitor and control PDP-11/70.

In the course of updating the documentation many minor improvements were implemented
and, 1 addition, as a consequence of OSD development, the part of DAKZ written in the C pro-
gramming language should r~v be able to run on other computers, such as the Motorola MC68000.
This portability of software ‘mportant to us as we start development of a communication

module and a new multiple mic >processor test-bed node based upon MC68000!s. We have in
fact imported an MC68000 C coripiler from Steve Ward's group on the M.I.T. campus, and
successfully compiled DAK2Z, but have not tested the runability of any compiled code.
DAKZ supports use of the full 248K bytes of PDP-11/34 memory in the simplest possible
R way. The first 56K is directly addrussable by the processor, while the rest may only be ac-
) cessed by some {/O devices and by a vingle kernel subroutine that copies a block of memory
from any place to any other place.

=
=

i
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B DAK2? is currently up and running, but conversion of the A/D and magnetic-tape drivers and
DAS program is not yet completed. The DAK2 communication design, reviewed immediately
below, is completed and implementation is about to begin.

Communications between the PDP-1:/34 at any node and ocur PDP-11/70 will be accomplished
by a single ASCII full-duplex connection with XON/XOFF flow-control protocol, using standard
terminal interface hardware and the naturel ability in DAK to time-ghare the terminal port be-
tween several processes so that several independent DAK2 processes may send data back to the
PDP-11/70. Binary data will be transmitted by encoding them into ASCIH lines. This communi-
cations scheme, which is an enhancement of the system reported in a previous SATS,Z will sup-

port test-bed applications for the next several months without requiring a major implementation
effort.

A

The OSD mentioned previously consists of conventions and routines for passing large objecis
between subroutines, controlling errors and process exceptions, allocating memory, and per-
forming basic input/output. In UNIX such a system exists at the program level, based on the
UNIX shell language and the file system, but not at the subroutine level, where a real-time sys-
tem needs it. A version of OSD existed within DAK Version 1. It now has been revised and
made into an independent system capable of running with any operating system.

In addition to basic OSD, which is now implemented and running with DAK2 and UNIX, a

number of higher-level OSD objects have been designed for use by RENE and applications pro-
grams. The higher-level objects, for which we have preliminary designs, include memory

pools, a memory allocation system, byte strings used to store and access character strings,
) output streams for outputting text and graphics, input streams to provide a uniform syntax for
3 data and command entry, and pointer lists for possible artificial intelligence applications. We
plan to implement these and the other new OSD objects over the next few months as a basis for
the implementation of RENE. Since this is being done in the OSD context, these capabilities will

be available for use by DAK2 programs as well as RENE and should be easily portable to other
. computers for which a C compiler is available.

C. ARRAY-PROCESSOR SOFTWARE

In May 1980, we accepted delivery of three Floating Point Systems (FPS) AP-120B array
processors. Each of these computers, capable of 12 million floating-point operations per second,
provides the computational power for real-time signal processing at & DSN node. Two of the
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processors were installed directly in DSN nodes, and the third was attached to our PDP-11/70
system running UNIX for software development. In addition to the hardware installation, several
thousand lines of software for the array processors were installed on the PDP-11/70 UNIX sys-
tem: a cross assembler, linker, debugger, diagnostic programs, etc. Much of this software
was written in Fortran, but not Fortran 77 which is now standard for Version 7 UNIX. Installa-
tion thus also required some conversion. In addition, since the DSN nodes contain no provision
for mass storage devices and will be remote from our central computing facility, downloadable
diagnostics had to be developed by the manufacturer and tested at our site.

Three software pacKages were designed and are under development to make use of the array
processors. The first package is the Signal Processing System (SI'S; which runs on a PDP-11/70
with an attached array processor and is a software development package. It will also aid in non-
real-time data analysis. The second, the analysis server, uses the DAK operating system and
is targeted for real-time use in nodes. It controls data flow and real-time signal processing in
the DSN node. l.astly, the array-processor server will provide a DAK system interface to the
array processor in the test-bed nodes. The current state of these systems is described in more
detail below,

The SPS is a package for developing real-time DSN signal-processing software. SPS oper-
ates on a dual-processor system consgisting of a PDP-11/70 minicomputer, running the UNIX
operating system, and a Floating Point Systems AP~120B array processor.

SPS has two major applications in the DSN project. First, SPS will speed up offline pro-
cessing. Currently, the Acoustical Data Analysis Program (ADAP) (see Sec.III) runs can re-
quire several hours of PDP-11 time. These can be shortened to several minutes {near real
time) using an array processor. The plan is to eventually interface SPS-developed array-
processor software to ADAP to achieve that goal. Second, SPS permits us to experiment with
and develop new algorithms for real-time data reduction. The FPS code so developed and de~
bugged can be directly transferred to the DSN node for real-time uses. Thus, SPS provides an
environment for development of real-time node software without the need to operate in that real-
time environment from the start.

SPS currently provides for low-resoiution frequency-wave-number signal analysis. It isin
a state of rapid growth with high-resolution analysis to be provided as soon as matrix inversion
software is developed for complex Hermitian matrices. The following small sample of commands
displays the nature of SPS capabilities.

Command — csdm: Forms (ross spectral density matrices from channel data

INPUT Data from channels
List of frequencies at which to form csdm's

OUTPUT Average power
Cross spectral density matrices
Command —~ hform: Complex Hermitian form calculator

INPUT Complex vector
Complex matrix

OUTPUT Answer = [transpose (vector) * matrix * conjugate (vector)}
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Command - peak: Power and peak calculator

INPUT Array of frequencies at which to calculate power
Array of wave numbers at which to calculate power
Array of azimuths at which to calculats power
Array of cross spectral density matrices

OUTPUT Array of power peaks

Of the above, "hform" is a relatively low-level primitive command, whereas the other two
are examples of substantially higher-level commands. The higher-level commands are com-
posed of sequences of more primitive commands which also can be used directly.

The analysis server is a DAK2 software device which will reside in a DSN node and control
calculation of target parameters from raw data. It will manage the real-time data flow and sig-
nal processing within the node. It is planned to be operational by January 1984, at which time it
will implement initial algorithms which have been developed and demonstrated to work under
good signal-to-noise conditions (see Sec. III). The preliminary design of the initial analysis
server is now complete. Several hundred lines of C code, with documentation for the analysis
server, have been written, deskchecked and compiled, but not debugged. Following is a more
detailed exposition of the functions and operation of the analysis server and the real-time pro-
cessing it controls.

The analysis server must perform three important activities. First, it manages the flow
of data from the A-to-D server to the array-processor server. Second, it controls array-
processor execution of DSN algorithms on these data. Lastly, the analysis server communicates
with a DSN user process, accepting commands and returning power peaks corresponding to pos-
sible targets.

The analysis server will manage a dataflow of approximately 20,000 samples per second
from the A-to~-D server to the array-processor server. It acquires new data by sending empty
buffers to the A-to-D server and receiving full buffers back on its return gueue. Buffers are
not, in general, physically moved in this process. Headers of data buffers received from the
A-to-D server are checked for errors and the buffers are then sent, along with processing com-
mands, to the array-processor server for analysis. After the array-processor server has
accepte its commands and written the data into array-processor memory, the buffer is re-
turned to the analysis server and then back to the A-to-D server, where the cycle begins again.

Following is a sketch of a typical processing sequence controlled by the analysis server.

It is a two-phase operation. The first phase is to reformat data, take Fourier transforms, .ad
generate power spectral density matrices. The second is to do wavenumber analysis and {ind
power peaks. Data are received in multiplexed form in buffers holding a block of 542 samples
from each of 9 channels. Eight such buffers constitute an analysis interval, 2 g of data. The
software will accommodate changes in the number of microphones, sampling rate, block sizes,
blocks per analysis interval, etc., but there will be restrictions imposged by available FPS and
PDP-~11/34 memory.

The first step of the first phase in the array processor is that each block must undergo con-
version from A-to-D converter format (14 bits of mantissa, 2 bits of gain) to array-processor
floating-point format (10-bit binary exponent, biased by 542, and 28-bit 2's-complement man-~
tissa). Next, each channel of the block is fast Fourier transformed. From the transformed
vectors, cross spectral density matrix accumulators are updated for each frequency listed in
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array-processor memory. A full analysis interval of data (8 blocks) is processed in this way
before going on to the second phase. Average single-channel spectra may be accumulated and
used for resetting the frequency list to be used for the next analysis interval. The analysis
server will have queued all the required blocks and commands on the array-processor queue by
the beginning of the analysis interval. ’

The second phase of analysis takes the averaged cross spectral density matrices generated
by the first phase as its input data. At each frequency of interest, a set of complex steering
vectors will be computed and the power spectral density matrix will be inverted. The power is
then estimated by a simple Hermitian form evaluation for each elevation and azimuth of interest.
From the array of pcwer values, indexed by elevation and azimuth, power peaks are found and
saved for later return to the PDP-11 host. When all frequencies have been analyzed, the peaks
are returned to the analysis server. A time-out protection mechanism ensures that the array
processor will complete its calculations before the end of the analysis interval.

The analysis sesver must aiso communicate with a user process in the DSN node. This user
may issuc commands to open, close, start, and stop the analysis server. After receiving the
open command, for example, the analysis server must open the A-to-D server and the array-
processor server as well as a software clock to be used for time-out purposes. The start com-
mand causes the analysis server to send an analysis parameter object to the array-processor
server which will initialize its memory with the analysis parameters; then buffer flow must be
established, analysis begun, and peaks sent to an output stream.

The array-processor server, which is distinct from the analysis server, is the software
which will provide a DAK interface to the array processor. It will handle commands to read,
write, open, and close the array processor. It is the basic mechanism for executing commands
on the array processor. It will allow users to declare functions to be executed on the array
processor, initialize them, set parameters in them, load them, and execute them. The server
will also manage memory in the array processor, provide bootstrapping service, and handle
various exceptions and hardware interrupts.

The DAK2 array-processor server moduie currently consists of some 600 lines of C code
and 200 lines of documentation. The code has been deskchecked and compiled, but not debugged.
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III. ACOUSTIC EXPERIMENTS, ALGORITHMS, AND SOFTWARE

Data-collection activities and the development and experimental demonstration of a complete
processing chain from raw data to 2-node acoustic locations are reported in Secs. A and B
below. In Sec.C, udditional details are presented of the alpha-beta filter which has been incor-
porated into the single-site azimuth tracking part of that processing chain. Section D reports
additions to and modifications of the experimental signal-processing package which is used to
aid in the development and testing of algorithms.

A. EXPERIMENTS PERFORMED

One important aspect of the DSN program is the coliection of acoustic data that can be used
to test new algorithms as they are developed. These data are collected in conjunction with the
ilight of an aircraft over a known course so that experimental and theoretical results can be
compared. The data consist of microphone time-series data which are recorded at one or more
nodes onto 9-track digital tapes. In addition, a 2-channel analog cassette tape is recorded at
each site. These tapes, together with a record of the aircraft flight path, are then archived in
our data library.

The 2-channel analog tape serves two purposes. One channel is used to record the sound
at the urray using a separate microphone. The other channel is used to record the conversation
betwzen the node operator, the rooftop spotter, the mission controller, and the pilot. These
tapes are used to help analyze an experiment in several ways. First, the speech track is played
back to ascertiain when the pilot was over certain marks on the ground. Secondly, the comments
of the spotters are used to aid in associating results with other air and surface traffic. Thirdly,
the sound channel can be listened {0, or played back through a real-time spectrum analyzer to
determine what spectral components were present at any time in the environment,

The major exporiments performed thus far are detailed in Table ITI-1. Thay consisted of
three helicopter flights and one flight with a fixed-wing propeller-driven T28 aircraft, These

A

TABLE Hil-1
EXPERIMENTS CONDUCTED

Range (km) Conditions Array
Aircraft Minimum | Maximum Wind Environment on Building
4 Small Bell 0.5 4.0 Light | Moderate noise it

Helicopter

A o o

Small Bell 0.5 3.8 Gusty Noisy L

Helicopter

. 128 Propetler 0.6 6.0 Light Noisy L, J
Aircraft

HU1 Helicopter 0.7 8.0 Gusty | Moderote noise L J

1 With rectongular arroy; all others used tri-delta armay.
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experiments were conducted under diifeiing environmental and wind-noise conditions, as noted
in the table. All data except for the first experiment were recorded using the new tri-delta ar-
rays, whose configuration is shown in Fig.1I-4. Both the T28 aircraft and the UH4 helicopter
were recorded at two nodes simultaneously.

In order to accurately Jocate ground marks, a member of the DSN team rode along as ob--
server on the T28 and UH1 experiments. There was an operator for the node, as wellas a
spotter on each roof near each node, and an overall mission controller. As a result, these two
experiments were very well controlled and documented, reflecting ihe lessons learned from the
first two experiments. The only remaining problems are those of ensuring accurate time stamp-
ing of data and its coordination with aircraft location. These are being addressed by the planned
incorporation of accurate time standards into the nodes, and the use of radar tracking
information.

B. DEVELOPMENT OF ACOUSTIC TRACKING TECHNIQUES

During these past six months, we have successfully completed one major objective, namely
the demonstration of algorithme to enable two nodes equipped with acoustic sensers to cooper-
atively locate low-flying aircraft. These algorithms involve a complete processing chain from
raw-data inputs to aircraft locations as outputs., The algorithms have been experimentally
demonstrated to work using data recordings of a T28 aireraft from two nodes. Locations and
the true track are shown in Fig. Il[-4, The aircraft was tracked over some 2 km of its flight
path with an accuracy of about 100 m except in the region where geometrical dilution of preci-
sion had a large effect.

While the results were excellent in proving some of the concepts employed, they should not
be construed as being representative of the ultimate performance that can be achieved with
acoustic sensors. The process of acoustic tracking involves a number of stages such as beam-~
forming, frequency-target association, azimuth tracking, location, and location tracking. Until
now, emphasis has been placed on finding a technique that would work at each stage rather than
on optimizing the performance at each stage. It is anticipated that significant improvements
in performance will be achievable once changes are made to the algorithms based upon the les-
sons learned so far. It is also worth noting that the general area of the Laboratory is a rela-
tively high-acoustic-noise area,

The locations of the aircraft were obtained using an extension of the algorithm described
in the prior SA'I‘S.i The algorithm produces locations given updates for an arbitrary number
of azimuth tracks from an arbitrary number of nodes. But all locations are for pairs of sensor
nodes. This algorithm builds lists of azimuth vs time for each of the azimuth tracks from each
of the nodes. New azimuth-time points are then compared with each of the lists to ascertain
where corrcsponding observations occur, and from these the locations are generated. To keep
memory requirements within reasonable bounds, points are removed from the lists as soon as
tiey are older than the longest time-difference-of-arrival between the nodes. It is expected
that a version of this algorithm will be run in every node of a real-time system, and its cutput
will be fed into a location-tracking filter.

A critical element for the successful determination of location is the generation of an
azimuth-vs-time curve for a target. This requires several processing steps to be carried out
every processing interval, which is typically 1 or 2 s. First, the time series from the micro-

phones are analyzed to determine the directions-of-arrival at several different sound frequencies.
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Fig. llI-1. Acoustic locations of T28 aircraft produced by nodes on Buildings J
and L. Straight line shows target track; solid dots show locations. Target heard
at larger distances, but locations not calculated due to geometrical configuration.

Then, different frequency components are associated by direction-of-arrival into target azi-
muths, which are finally fed into target azimuth-tracking filters, These filters estimate the
smoothed azimuth tracks which are used as input to the location process.

To obtain the direction-of-arrival of the frequency components, the MLM beamforming
tech:ﬂiqt.iei was used. The analysis was done at eight frequencies with a resolution of 4 Hz.
Since the arrays have good response from at least 20 to 200 Hz, and the targets had line spectra
with widths less than 1 Hz in this band, our ability to detect the targets is not optimum. The
best performance was obtained when the eight frequencies were selected to be the eight largest

doral

peaks in the average power spectrum. In general, all our initial algorithms tend to perform
best when the target of interest is the dominant noise source. The limited number of frequ icies
E - and resolution were fixed upon in anticipation of conversion to real-time processing within in-
dividual nodes. We wanted a first-version algorithm which would work and which we could
clearly see how to implement in the real-time nodes.
While the use of eight frequencies is suboptimal, investigation of the best means to chodse
- them did disclose some interesting phenomena. By looking at analog recordings using a high-
resolution real-time spectrum analyzer, we observed that the aircraft was rich in harmonics,
We also observed that there were at least eight peaks visible in the 20- to 200-Hz spectra for
most of the targets used for experimentation. However, we also observed that at any one time,
several of these peaks could fade or be destructively interfered with by other noise sources.
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If all frequencies cannot be examined, then it is important to track the spectral peaks and not
to rely on : small number of fixed frequencies for beamforming.

Optimum performance can probably be obtained by doing the MLM beamforming at all fre-
quencies between the 20- and 200-Hz frequency limits with a 4-Hz or smaller frequency bin.
This must be donz for all azimuth and elevation values of interest, so the computational load
required to do this is high. Also, it will exacerbate the probiem of how to cort out the targets
from the expected large number of peaks. However, the possible gains in performance are
large enough that this will receive major research emphasis in the near future.

It was originally hoped that the computational load could be reduced by restricting the search
for peaks of sound pressure to the horizon. Unfortunately, the peak response on the horizon
can occur at a very different azimuth from the true peak. An ¢xample of this can be seen in
Fig. l11-2 which shows a contour plot of power as a function of wavenumber at a fixed frequency.
In the figure, the response azimuth is represented by clockwise rotation and response elevation
by distance from the center of the circle, with the outer ring representing the horizon. The
true peak of response is marked B, whereas the cemponent on the horizon is marked by A.

We found that A moved erratically with time due to changes to the shape of the shoulders with
interference. However, B moved steadily with target bearing. We concluded that it was nec-
essary to compute the response at 2 sufficient numbear of azimuths and elevations to totally sam-
ple the wavenumber space.

The method used for finding the direction of each peak is a modified one-of-eight algorithm.
The aaia are the power-vs-azimuth curves, computed for a number of elevaticns, at one of the
selected frequencies, as sbown in Fig. ili-3. A1 the power-vs-azimuth curves are evaluated
at the same set of azimuths. Each point has two neighbors at the same elevation angle, and
three at each of the two neighbor elevations. The algorithm compares each point with its eight
neighbors. If a point is higher than all its neighbors, then it is deemed to be a peak. This is
simple to apply and produces good results., However, it does suffer from the problem of finding
extraneous peaks when the sample intervals in azimuth and elevation differ significantly., An
example of this is shown schematically in Fig. III-4 where one peak would be mistakenly reported
as three. This problem was overcome by extending the comparison to enough circumferential
neighbors to equalize the radial and circumferential wavenumber extent for comparison. This
works in all but a few cases, which occurred infrequently enough to not affect the final results.

—ei e AZINUTH [T
SAMPLE
BCREMENT

Fig. [lI-4. Schematic representation of sit-
uation in which a higher sampling rate in
azimuth than in elevation could cause un-
modified one-of-eight peak-picking aigo-
rithm to produce false peaks.
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There would be no need to modify the one-of-eight algorithm if azimuth and elevation in-
crements were about equxl and both were sufficient for sampling the power function in azimuth
and elevation. Bui to always sample at an equal and high-enough rate in both dimensions to
handle the worst case would be computationally very costly. We have modified the algorithm to
allow us to sample more coarsely in elevation than in azimuth, with a corresponding reduction
in computation load. We typically sample azimuth uniformly évery 3% but use no more than
gight elevation values.

Some &0 to 90 pezks of rasponse are typically found per analvsis interval, resulting from
analysis at eight frequencies and eight elevations. Each of these peaks is characterized by
azimuth, elevation, frequency, and sound-pressure level. If the azimuth values for each of thess
peaks are plotted vs time, the result is a speckle plot of the type shown in Fig. [lI-5 for a T28
aircraft. Al pezks with an amplitude greater than —10 dB relative to the highest peak during
each analysis interval are plotted using a symbol whose density is a function of the relative
sound-pressare level in the analysis interval., From this figure it is possible to discern several
aircraft tracks and, in particular, that of the T28 whose theoretical scoustic azimuth vs ime
is shown in Fig. [li-6. The T28 flew on s straight-line course and, at a range of several kilo-
ersed ¢course and flew on a straight line in the reverse direction.

g
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Exzmination of the speckle plot reveals that while the azimuth tracks are clearly discern~
ible to the eye, there is enough clutter to make the straightforward application of tracking al-
gorithms difficult. The next steps in our present processing séquence are to cluster and prune
the pezks.

Each source of sound can emit multiple frequencies, and we would like to associale these

: '35.; Intervl, We huve Juie hiS using siandzrd cins:ermg tech-

Fig. III-7. Schematic of peak clustering
in azimuth~elevation space. Nearby points
are clustered and replaced with an appro-
priately weighted average which 1s alse
assigned a significance rating.

®

ELAVATION
)

O/MEE;

ARIMESTH

(i
»
»

.m

¢

elevation, and =iso shows clusters formed from pesks that are close together. In forming :es-
ters, a distancing function is used which is the weighted sum of the absolute difference in a=zi-
muth plus the absclute difference in elevation, weighted to give more emphasis to azimuth dif-
ferences than to those in clevation. The nlgorithm assigns each peak s weight equal to its
sound-pressure level multipiied by its probability of being nonrandom. The requred probability
is determined from average power levels and the assumption that noise power has 2 Rayleigh
distribuion. [ then finds the closest two peaks according to the distancing funcion and combines
these into one cluster, The resultant cluster is located at a weighted average azimuth and el-
evation and is assigned z weight equal to the sum of its part=. The cluster is now vsed instead
of its constituent poaks, and the algorithm is repeated until no peaks or clusters ¢an be found
thai are within some specified maximum distance in azimuth and elevation. The resuliant
clusters are then assumed fo represent targets.
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There are many low-level interfering sources of sound in the environment, and, for our
initial processing, pruning was used at two levels, First, no peak was used as input to the
clustering process which was more than 10 dB below the biggest peak in the analysis interval,
Second, only the three clusters with the highest weights were used as input to the tracking fil-
ter. This considerably reduced the processing load and made it possible to use a simple as-
sociztion scheme for the tracker, The penalty paid for this pruning and the procedure used for
selecting frequencies for spatial analysis were to limit ithe formation of tracks to a few dominant
sound sources. Despite these limitationus, it was possible to form clusters that clearly delineated
aircraft tracks for distances up to 2 km from the nodes. Figure III-8 shows the clusters formed
for a 2-min. segment of the flight of the T28 aircraft, together with the azimuth tracks formed
from these. We expect that performance improvements will be achieved in a number of ways,
including array processing before frequency selection and using target handover information to
control processing,

A straightforward procedure has been used for azimuth tracking., The clusters formed in
each analysis interval are compared with the extrapolated values of azimuth for existing tracks,
as shown in Fig.III-9, If the ciuster falls within some acceptance angle range of an existing
track, then it is associated with that track, and used to update its tracking filter. If a point
falls outside an existing track, itis treated as the initial point of a new track. In the current
implementation, if a track is not updated it is terminated without coasting. Using an acceptance
angle of 10° the «-B tracking filter, which is presented in more detail in Sec.C below, pro-
duced the tracks shown in Fig.IiI-8. The data shown in the figure, plus similar results from a
second array, were input to location algorithms described previously to produce the locations
shown in Fig, IIl-1.

C. SINGLE-NODE AZIMUTH TRACKING FILTER

Azimuths assigned to clusters of peaks include random estimation errors. These errors
are reduced by processing the clusters with a tracking filter, The tracking filter produces tar-
get azimuth estimates based on past data points and the current data point. It essentially puts
a smooth curve through the data points.

The type of filter chosen for this is the o-f filter, which is a simplified Kalman filter that
uscs a first-order motion model. The formulation given here is based ou the work of Bridge-
w“tch and is that used to produce the tracking results shown clsewhere in this report.

Let © be the symbol representing azimuth, and T be the analysis data interval between
the production of groups of clusters. Then, the prediction of the current value of 6 and its
derivative from the prior estimates of the same quantities arve

~ A
Ok = Okg ¥ Oy
and
. N
Ok = Okuq

where the k subscript refers to time, and the symbol A identifies the previous estimates. These
predictions, together with the azimuth Pyo- of a new cluster can be used to calculate updated
estimates of & and & as follows:
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These prciictions are also used for data associations as explained in conjunction with Fig, IlI-9.
These estimates, which are the state of the filter, are the output of the tracking process.
They are controlled by the parameters o and § which are computed as follows:
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where

Dy=ttay g #2y g +6q*¢
and

5, =6, , +& —B°D

k = Og-q & —PyDy

where ¢ is a controlling parameter that prevents ¢ and f from going to zero as time — =.
It is given by
where q is the covariance of the model error, and r is the covariance of the measurement
error,

In initial tests, q and r have been assumed constant and, hence, so has ¢. The value of
| ¢ was chosen to give a compromise between smoothing the azimuth track and losing track. If
E ¢ is made too large, then the tracking filter output is predominated by new data points. Asa

result, there is not much smoothing, If ¢ is made too small, new data points have litile effect

i and the estimated curve follows a straight line, with a consequent loss of track. A value of
H 0.1 was found to be a good compromise for the cases studied.

The initial conditions used for initiating the o-p filters were described in Ref.4. That is,
given two initial measurements p 1 and Py, We initiate a filter with

I

A

E A
= - - 02'92

and parameters ay = 1, 62 = 14, D2 =6, and 62 =2,
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D. ACOUSTICAL DATA ANALYSIS PROGRAM (ADAP) ENHANCEMENTS

Enhancements have been made to both the analytical and plotting capabilities of the ADAP
program which is used for algorithm development and testing. In addition, changes have been
11ade to the structure of the program to convert it to a multiple overlay program. This, in turn, =l
increases the memory space available for analysis, which had proved to be a limitation. ]
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The major analytic extension tc ADAP is the generation of peaks directly from any of
the standard input-data formats. Peaks are located in azimuth and elevation, using the ex-
tended one-of-eight algorithm, and are written into "peak" files. These files have data records

with the format:

Field 0; Time
Field 1: Frequency
Field 2: Elevation
Field 3: Azimuth
Field 4: Sound Pressure Level
Field 5: Signal-to-Noise Ratio
Other analytic extensions include:
(1) Ability to individually specify channel gains.
(2) Ability to use any selected set of input channels for analysis,
(3) Ability to specify offset time into input data at which to start a run,
and also the duration of the data to analyze.

(4) Choice of methods for choosing frequencies at which to do analyses.

Extensive additions have been made to the plotting capabilities of ADAP. The first exten-
sion is to allow multiple time series, spectra, or power-vs-azimuth curves to be plotted on a
single graph. A typical example for time series is shown in Fig. 1I1-10. The user can select
the number of graphs that appear on a single page, and the program will automatically produce
as many output pages as are necessary to provide the requested plots.

onen ¢ BLALAL A ALRAiias LANRA . ALALNLAL S
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*ig, 111-10. Typical ADAP graphical output showing multiple time series.
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In the case of time series, the user specifies the channels for which plots are desired.
The starting time and the number of seconds of data to plot are also specified. The scale on
all traces is made the same so that they can be directly compared. This scale is automatically
chosen unless the user wishes to override the default and specify the maximum sound-pressure
level. The parameters of the plot are indicated on the bottom of the page along with an -
80-character comment field which the user can input prior to running the analysis which creates
the plotting file.

Spectral ple's are similar to waveform plots, except that the user specifies starting time
and the number of seconds over which to average the spectra of individual channels. Also, the
user can Specify the minimum and maximum frequencies to be plotted,

Power-vs-azimuth plots are parameterized by both frequency and elevation at which the
power-vs=-azimuth computation was performed. Again, the user can specify how many plots
appear on a page and whether the scale is automatic or specified, The user specifies the time
offset intc the file, and the data are plotted for the next data interval. By specifying ranges
for frequency and elevation, the user can limit the number of graphs plotted.

An alternate to the power=-vs=-azimuth plots is also available in the form of a wavenumber
plot, as shown in Fig. III-2. This is a contour plot of power vs wavenumber at a single user-
specified frequency. The wavenumbers have both north-south and east-west components, with
zero wavenumber value lying at the center of the circle, Target bearings are measured by
clockwise rotations from north around the circle, Target elevations appear as a radial distance,
with targets overhead appearing at the center of the circle and those on the horizon appearing
on the outer circle. Bearing marks are given every 10° on the outer horizon circle. The inner
circle indicates the maximum specified elevation — in the case of Fig.III-2 it is 72°,

The power contours are interpolated from the power vs azimuth and elevation data, and
are displayed with a user-specified decibel increment between contours. Different contour line
patterns are used to indicate uphill and downhill directions. The highest-level contours are
solid, followed by smail dots and so forth. The user specifies the time and frequency of in-
terest, and can specify the maximum scale level or have it automatically selected. The min-

imum level is always automatically selected.
The speckle plot output, shown in ¥Fig.IlI-5, was selected as the ADAP graphical form to
use for peaks. Peaks are plotted by azimuth and time, using a symbol to indicate the strength
E of the pezk. Because of the limited range of symbol densities available, the symbol chosen was
based on a normalized value relative to the highest peak in the analysis interval. The highest
peaks received an "*" and those 10 dB down from the peak are indicated by a ".", with all pezks
k- below this level not being plotted. The result is a plot showing the relative strength of target
peaks aggregated over all frequencies, While having some limitations due to symbol density
range, it does give a good indication as to detectable target azimuths and has proved invaluable
in interpreting experimental data,
The ADAP now includes 15,000 lines of code. We could not fit it into the 64K bytes of data
and 64K bytes of instruction space permitted for a single task on our PDP-141/70 computer
and still have the features we desired. Therefore, during the past severai months ADAP was
restructured as a multi-program set running under the control of an executive, as shown in
Fig.1lI-11. The executive module, ADAP, handles all communications with the user. It takes
in commands either directly or from files, and stores the resultant parameters. When a com-
mand is given to run an analysis, the executive writes all the information into a temporary file
and passes control to the ARUN program which performs the analyses.
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ADAP
EXECUTIVE

R e RTETEAA A TATHARTITA

WAVEPLOT

. TRANSFER
OF CONTROL

TRANSFER

OF DATA

Fig.llI-14. Iuterrelationships of ADAP programs and files. Data file contents
a.e determined by a .xx extension to file name. Those shown are: (. pk) power
peaks, (.pa) maps of power in frequency — elevation — azimuth space, (.ps) spec-
tra, {.pw) waveforms, -nd {.gi) information about certain waveform files.

ARUN reads all the analysis parameters from the temporary file, including the input-data
format and the output file to be created. It then performs the specified analysis and returns
control to the ADAP executive program where the user can request to obtain plots. When this

is done, ADAP again uses a temporary file to transfer control parameters to the APLOT pro-
gram which performs the plotting of time series, spectra, and power-vs-azimuth graphs. When
wavenumber or speckle plots are requested, then the WAVEPLOT and PKPLOT programs are
run respectively.

The two major advantages of this organization are the ease of expansion to ADAP, and the

extra memory space made available for analyses. Memory space for all the'arrays and matrices
necded in the analysis of experimental data is still a limitation. However, we are now able to

E run with blocklengths and numbers of frequencies compatible with those to be used for real-time
processing in the array processor, Overcoming the remaining memory space limitations wi
be one of the major ADAP issues to be addressed in the upcoming year.
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IV. ADVANCED NODE ARCHITECTURE

The test-bed hardware and software described in Sec.II of this SATS have been designed to
provide the capability needed for initial DSN experimentation. The hardware is primarily sized
to provide for data acquisition, real-time signal processing, and basic communication capabil-
ities. We have started to investigate a new node computer architecture which can augment the
capabilities of the test-bed nodes and can serve as the basis for future development of small low-
power nodes. The architecture being investigated is a multiple-microprocessor node, with
processors interconiected by high-speed packet~-oriented busses.

One of the modules of this processor will interface to a radio unit which can measure ranges
between radio units located at different nodes and can also provide DSN internode communication.
This module will support communication management in the DSN and will provide a self<location
capability by means of the node-to-node range measurements, Other processor modules will
augment signal-processing capability, provide processing power and memory needed to support
investigation of advanced DSN concepts in real time in the test bed, and support input and out-
put between the node and other attached peripheral devices.

The following sections summarize progress with the real<time network system software for
the advanced node architecture {(and for the DSN test bed in general) ard present an overview of
one strawman hardware design for the advanced node. Earlier work on the basic system soft-
ware (REal-time NEtwork kernel, RENE), which is being developed to run on the existing
DEC PDP=-11 machines in the test bed as well as the new advanced node microprocessors, was
presented in the previous S.s%.'I‘Si1 The hardware design summarized here represents a strawman
which is being used to refine ideas and help identify critical problem areas,

A. REAL-TIME NETWORK KERNEL (RENE)

Design of RENE has progressed, with implementation on the operating system indepen-
dent part (OSD) proceeding as reported in Sec, [I-B of this SATS. As discussed in Sec. II-B,

OSD is a major part of the RENE code and, in particular, contzins memory pool managers that
form a substantial part of the interface between an application process and the RENE network
communications processes.

Two versions of a memory mapper design have been developed, but we are still not satisfied
with the part of the designs that provides for swappable memory to be shared among real-time
processes. In addition, we need to review the designs with respect to commercialiy available
multi-microprocessor systems with hardwired or minimally controllable memory maps,

The process scheduler in DAK has been studied with a view {0 enhancing it in two ways for
use in RENE: first, making it suitable for implementation under UNIX as well as on stand-alone
computers, so that multi-process programs can be debugged under UNIX; and second, adding
a time-protection system, protecting the allocation of real time just as a memory-protection
system protects memory, so that processes can be slowed down when they attempt to c;vérdrive
the computer. Time-protection systems can be of considerable value and we are now reviewing
a general approach given in Ref. 2 to see if it can be adapted for use in the DSN.

Detailed work is well along on the communication subsystem design reviewed in Sec. IV of
Ref. 4, with particular emphasis on the user interface and on the interface to an underlying
communications network. In the remaining part of this section, we examine the commaunication
issues of network congestion and the use of datagrams as the communication interface for RENE.
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Along with reliability, throughput, and response time, congestion is a major problem facing
the designer of a distributed system. We reported on reliability in Ref. 1 and proposed that in
RENE reliable communication would consist of requests made from user processes to server
processes, each request would have a corresponding response, and user processes would be
responsible for retries. This meant that user processes had to keep a copy of the original re~
quest, use timeouts to force retries, and be prepared to retry upon receiving negative acknowl-
edgment messages from the network or server.

Note that many DSN application programs will not use reliable communication, but will use
nonclassical algorithms involving unreliable broadcast communication between nodes. From
the point of view of the operating system, such communication is s.mple to implement. Here,
we focus upon the more difficult problems related to reliable communication within and between
nedes.

o

USER REQUEST A —oy SERVER f— REQUEST B USER

PROCESS
PROCESS| . orcpoNSE & ——  PROCESS] | pecpONSE & —

= {6}

1 - |

HOST {NETWORK, HOST
HEEH

lt— MESSAGE A — | MESSAGE B —s]

Fig. IV-14. Similarity of communication network congestion and
) server congestion in a distributed system. (a) Server in a dis-
H tributed system; (b) nod~ in a communication network.
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Distributed operating systems =u:fer from congestion that arises in the same way congestion
arises in a network. Consider ¥ig. IV-1{z} in wl ~h we depict a distributed operating system
with one server, two users, and twe request messages and their associated csponse messages,
In Fig. IV-1(b} we redepict these same objects after renaming them: each request message has
been identified with its associated respongse message, as if the two were the same message,
while the server has been renamed a "n :twurk node"” and the users have been renamed "hosts®

L

As this renaming suggests, a distributed operating system will behave with respect to congestion
like a network, with servers behaving like network nodes and susceptible to congestion in the
E ., same way.
When a distributed operating system is built on top of a real message-passing network, it
is important to try to decouple the congestion problems of the operating system from those of
the underlying network. If this is not done, congestion in a network path can cause congestion
in a server and vice versa, One good means of decoupling the congestion seems to be what we

i

call the perfect-sink/memoryless-link rule. The perfect-sink rule says that the operating sys-
temn will without delay accept any message presented by the underlying network, thus behaving
like a perfect sink for messages. The memoryless-link rule says that links provided by the
underlying network have no memory and. like wires, cannot save messages arriving at their
ends. These two rules are, of course, the same rule viewed from opposite sides of the
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network/operating system interface. RENE will be made to approximate a perfect sink as
nearly as possible.

Now consider the servers. They can take ai least two different approaches to congestion
control. A magnetic~-tape driver, for example, prohibits a sender from transmitting the data
before a buffer is ready for it. This is positive congestion control: a« request for receiver buf-
fer space must be positively acknowledged before data can be sent. But a disk-file manager with
many users may be best off by allowing oversubscription of its receiving buffer space. If this
is done, then some data-write requests would have to be negatively acknowledged with a try-
again-in-a-moment message. This is negative congestion control. Both techniques will be re-
quired, depending upon the specific driver and circumstances.

The impact of our reliability and congestion attitudes is to make the interface between RENE
and its underlying communication networks consist of datagrams which are messages presented
by RENE for transmission through the network and which have the following properties: there
is in general no advanced preparation for a particular message by either the network, or as far
as the network knows, by the receiver of the message; and the network does not have responsi-
bility for infallibly delivering the message.

Table T¥-1 lists the mniformaiics required in a datagram header by the current RENE design.
Five of the items are variable size, and in each case the size iius been allowed to vary in units
of 2 bytes from 0 to 30 bytes, so that the size may be encoded into 4 bits. The general meaning
and use of most of the header contents should be clear from the table. However, following are
additional comments and explanation related to "eirguit® and *flags.t

Throughput and response-time considerations suggest that the physical netwerk be partitioned
inic portinns we call circuits which have specified response properties. For example, a high-
performance circuit might be used 1o cxchange datagrams between processors in a single DSN
node; another circuit might provide a guaranteed transfer rate to neigiboring nodes while pro-
viding a specified maximum delay and probability of error. Many different circuits and several
different kinds of circuits are expected to be required. Several datagrams with a common cir-
cuit may sometimes be combined to reduce the overhead of datagram headers and improve
throughput.

Flags in the datagram header zre in anticipation that the underlving communication network
may provide information about some of its congestion control activities. In particular, it might
give information about datagrams deleted by the communication network for congestion control
purposes. However, it is not assumed that the network must supply such a2 service or that the
service, if provided, is perfect.

In the current RENE design, connections between nodes are opened with the help of a direc~
tory server which provides the source-node address, destination-node address, circuit IDs,
checksum format, and the maximum number of information bytes allowed in a datagram using
the circuits. The rest of RENE and application code need not be able to interpret the source
and destination addresses or circuit IDs in terms of network implementation or configuration.
The input to the directory server from a tvpical RENE program tryving to open a connection is
a character string pathname plus some access-tvpe options {e.g., read, write, execuie). Code
for creating circuits is embedded in directory servers.

B. STRAWMAN HARDWARE DESIGN SUMMARY

Here we summarize a strawman design, designated Distributed Processing Unit 1981 or
DPU84, for a packet bus interconnected multi-microcomputer system which might be the basic
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TABLE V-1
DATAGRAM HEADER CONTENTS

Nome Bytes Lke

size 4.5 Number of information bytes in datagram (from 0 through 32,768), and
sizes of source, destination, circuit, 1D, and sum fields,

source Oto 30 Address of network node thot is datagrom source,

destination 0to 30 Address of network node that is dotogrom destination,

circuit 0to 30 Identifier of network circuit whose resources the datagram is to use,

1D 010 30 Unique dotagram identifier, Unique for dotogroms with the some
tire-stomp, source node, and destination node, provided thot the
lifetime of any datagram ID in the network is <30 min,

sum 010 30 Datogram checksum or encrypted signature thot verifies thot datagram
has not been changed since originally created, This signature is
verifigble by the general public, including each network node through
which the datogrom posses.

time 30 Time dotogram wos created, in units of 1/1024 s, with 4-h ambiguity.

fiogs 0.5 The following flags:

DG_CONTROL When trve indicates thot the information bytes
contain o control message from the network to o
source or destination node obout the dotagrom
identified by the time-stamp, source, destination,
and 1D,

DG_DESTINATICN  On if control messoges obout the dotagram should

be sent to destination insteod of sent back to source,
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computing unit in future DSN test-bed nodes. All DSN functions including self-location, com-
munication, resource management, tracking, and signal processing are to be supported. The
architecture should yield a moderately priced node usable for research in distributed systems,
and also be a model for the development of future low-cost nodes. The architecture should not
be overly committed to any pariicular Sensor. algorithm, or microprocessor chip. The design
should be such that we can make effective uze of existing DSN processing elements, such as the
PDP-11/34's and FPS-120B signal processors now in the DSN node. The DPUB1 architecture
includes an integral signal processor, but we do not plan to develop such now and expect to use
the FP5-120B's indefinitely. The system design should incorporate features which reduce the
gifficulty of construction, hardware debugging, and maintenance.

The design given here is intended to offer a superset of the features that wiil actually be -
implemented. ‘The final selection of features to include will be made while finalizing the archi-
tecture and proceeding to deiailed design and development during 1981.

The DPUS1 design given here is not the only way to obtain a multi-microcomputer node with
the same general architecture. It is possible to build DPU84, or something like it, around ex-
isting commercial microcomputer printed-circuit boards. This might well increase cost and
power consumption as well as require compromising on some desired features. But it could
reduce development effort. The desirability and utility of that approach depends greatly upon
the fast-changing commercial microcomputer market. Before further detailed work on the ex-
isting design, one of our next tasks will be to review commercial offerings, which have pro-
gressed considerably in the last few months, and evaluate if we can take advantage of new
developments,

In the subgections below, we summarize existing DPU81 design documentation with emphasis
on how the microcomputers are related to each other.

1. Physical Layout

The DPUS1 design calls for 2 19~in. rack-mounted unit about 10} in. high capable of mount-
ing up to 32 printed-circuit boards each holding at most 150 ICs. The backplane contains a
&4-line packet communication bus which connects all boaids. Each board nominally consists
of a 50 IC communication bus interface nlus a 100 IC microcomputer. The microcomputer will
typically inciude 256K byies of RAM and either a Motorola MC68000 general-purpose micro-
processor IC or an 8X300 1/0 controller IC. The design goal is an average of 0.25 W regulated
power per IC, or with a power regulator operating at 75-percent efficiency, 50 W unregulated
power per board.

Since an MC68000 has the approximate processing power of a PDP-14/44, though with an
insiruction set whose high-level langunge capability is closer to that of a VAX, the maximum-
sized DFUS{ has a very large amount of romputing power.. By using smaller numbers of boards,
the DPUS1 may be scaled down to a lower limit of two boards: one I/C processor and one
general-purpcse processor which would have a combined power consumption of 102 W. A con-
figuration which would be more appropriate for a complete DSN node might consist of 6 processor
boards and 5 signal-processing boards, and would have & times the general-purpose processing
power of our current PDP-11/34, twice ihe signal-processing power of cur current FPS-420E,
and hopefully draw only 600 W of unregulated power.

It is desirable to be able to extend the microcompeters bevond 150 ICs, so the backplane
makes provision for é4-line short busses, called daisy chained busses, connecting several
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Fig.Iv-2. PacRet communication and various daisy chained busses.

adjacent boards. Each microprocessor Loard is the head of a daisy chained bus, which connects

this board with 2 set of microcomputer extension poards fo its right {see Fig.IV-2}. The
58000 board is the head of one suck é4-line daisy chained bus called the memory bus, which
can accominodate a processor extension card with a memory map, cache, and an additional

25¢K bytes of RAM, and a memory extension card with 131 byie of memory. Similarly, the

1/0 processor board is the head of a daisy chained bus upon which 170 interfaces can be con-
structed, though actually the principal idea behind using the X300 1/0 controller is that it is so
<ternal devices can be interfaced to it by cables, with~

fast in 170 control applications that most e
O interfaces can also be constructed for the MCE8000

out any special-purpose hardware logic.
memory bus, but that would disrupt some of the reliability features ontlined below.

are also accommodated on the bus. The DPUS1 design specifies
that there be fwo types of signal-processor hoards: an instruction element and a data element.
tach instvuction element is the head of a daisy chained sigaal-processor instruction bus con-
ements. Thus, it is possible to build Singie Instruction Stream Mul-

saining one or more data el

tiple Dzta Stream {SIAMD) signal processors with varying numbers of data elements from these
two boards. A review of DSN signal-processing requirements for various sensors — acoustic,

infrared, radar — indicates that a SIMD design is appropriate. In the sirawman design the in-
struction elements are very £ is intended ihat a general-parpose 31C&8000 micro-
uter will supervise the signal-processor boards and provide bulk memory for signal pro-

cessing, with the packet communicatien bus being ssed for cammunicail etween this

that 511 uge 312-bit data and &4-bit parame-

ters. In the immediate fulure theSe are assumsd 1o be fixed point, becaunse the BICE&R000 does

2
)
#
#
bt

g
=

A

Il




i

R

Wiy o

not yet support floating point. The design assumes that the signal g:rocessaré in one node might
eventuzlly be required to do up t¢ 32 million real arithmetic operations per second, and require
packet bus communications at a rate of 4 mfllion data words per second to sustain this rate.
For example, a SIMD signal processor with 1 instruction element and 8 data elements should

be able to reach the maximum arithmetic rate if the alporithms partition properly, as they do
for DSN signal processing. Given the above assumptions, the packet bus throughput required
for signal processing is 16M bytes/s (1 bytes per data word). To provide for this, allow for
unanticipated growth, and provide for other interactions on the bus, we have specified a bus
rate of 3251 bytes/s. This should be easily achievable using 32 data lines and an 8-MHz clock
rate. Note that this high speed is driven primarily by signal-processing activities. An option
to be investigated in the near future is the separation of the signal-processing traffic from more
general interprocessor communication.

3. HeHability and Clocking

For reliability and maintencnce reasons, it is very desirable 1o be able e run two identical
boards syschronously through the same states comparing their ouipuis and even internal signals.
There are two imporiant applications of this. One is repairing faults during manufacture and
maintenance, and the other is isolating faults to board level under remote control in an opera-
tiona} s;s em. With this in mind, the DPUB4{ design provides for this synchronous operation
cupability.

The synehronous operation of two boards will allow the use of arbitrary apglication software

diagriestic program and will isolate faulis to the board level under remote control. In gen-

'1

as z diagne:
eral. only one of 1wo boards running synchronously will be enabled to output packets or other
signals. For the case of packet transmission, only cne computer outpuis the data part of the
packet, but each computer outputs a separate checksum, so that receivers can check whether

the synchronized microcomputers agree on their result. Identical multi-board as well as single~
board microcomputers can be syachronized.

Given synchronived boards running appiication software, a technician using special probes
can deternune points on the board where signale disagree, and can search for the carliest point
ment, thereby isolating a fauli. By synchronizing microcomputers under remote
ulis can be isolated to micress

sputer level in an operational system.
more difficult to synchronize 170 microcomputers. Fivst, most deploved DSN nodes
will not contain twe 1/O microcomputers with identical external sitachments. Furthermore.
nections would be required te synchronize two 1/0 microcomputers because
entering them are not synchronized with the system clock. The problem of

iagnosis for the cage of 170 processors is an area requiring more study to deter-

r clock, and to attemmeéatmg microprocessors with é;fferesi speeds, The
¢lork is made reliable by providing redundant mnaster clocks, one on each I/D
microcomputer board. These boards negoliate 2t system startup tine as to waich shall become
the master clock. The 1/0 boards can discennect themselves {rom the packet communication
bus, can ron independently and asynchronously from that bus, and can monditor that bus. These
bozrds zlso coniain a small nonvolatile memory 0 romember the past successes and failores
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of boards or *he bus. To accommodate various-speed microprocessors, synchronized 8-, 42-,
and 16-MHz master clocks are provided.

4., The Packet Communication Bus

The packet communication bus provides all inter-microcomputer communication. The data
rate of the bus was set at 32M bytes/s above. Aliowing each microcomputer on the bus to trans-
mit an average of 1000 packets per second, with the designed maximum of 32 microcomputers
on one bus, gives a maximum aggregate bus rate of 32,000 packets per second.

A design objective for the packet communication bus is that iis interface be implementable
with a modest amount of hardware. A nominal parts count of 50 ICs is the goal. For this reason,
packet buffer memories have been eliminated from the interface, and packets are to be trans-
mitted directly from the rnain memory of one microcomputer to the main memory of another., -
The speed of lurge main me.nories is limited by existing technology to rates of about one 32-bit
word per 250-ns average (for burst transmissions at sequential locations using a memory iC
feature called page mode), or 46M bytes/s. This is half the desired bus rate. Thercfore, the ®
DPU81 design has two separate 16~bit data busses for transmitting two independent packets at
once, each at a 16 M byte rate. Thus, there are four microcomputers involved at one time in
transmitting two packets and receiving two packets. This scheme requires that the micro-
computer memories be completely co-opted by the packetbus interface when they are transmitting
or receiving packets. This is a minor problem for 1/O processors which must have faster,
hent ¢ smaller, main memories, We may possibly decide that it is better to have 3 or 4 packet
busses each with 8-bit data paths and 8M byte/s rates, rather than just 2 busses,

A block diagram of a communication bus interface is shown in Fig.IV-3. The bus actually
consists of three separate busses: a signal bus with 8-bit data, and two packet busses with
16-bit data. The signal bus is scheduled using a priority algorithm with 64 priority levels.
Special signals called packet-enable signals are used tu schedule the packet busses. Packet bus
scheduling is overlapped with transmission Jf previous packets. Once a packet transmission
18 ready to start, the transmission processors in the interface take over and transmit the packet.

SIGNAL CONTROL| o o
BUS {4 lnes) SIGNAL PROCESSOR SIGNAL MEMORY
8-BIT 94054 BIT SLICE [ 4k x 8BRITS =
SIGNAL DATA | | 125-ns INSTRUCTION 125-ns CYCLE =
BUS (8 fines) y %
=
1 FIFQ =
PACKET CONTROL] g 2
l BUS 0 (4 tines) 64x881TS FIFO s
64 %X 8BITS =
PACKET CONTROL| %
BUS 1 (4 hines) %
—~#{ TRANSMISSION PROCESSOR MAIN MEMORY =
16-BIT 9405A BIT SLICE [*F¥1 32-8iT WORDS 2
r—e- 125-ns INSTRUCTION 250 -ns BURST
PACKET DATA €25 oM
&N N
8US O (16 iines) CYCLE
PACKET DATA
BUS 1 (15 tines) [ [208878-1]

Fig,1v-3, Pucket communication bus interface.
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The general-purpose and I/O processors control the interface by placing programs in main
memory (not part of the interface) which are executed by the transmission processor. There
are actually 256 such programs, which are called channel programs, corresponding to 256 sep-

arate processes, called channels. One of these is used to send signals to other microcomputers,

and executes send-signal instructions. Another is activated every time a signal is received and
executes store-received-signal instructions. Other channels are activated whenever a packet-
enable signal is sent or received designating a channel which is to be executed to send or re-
ceive a packet. These channels execute programs that send or receive blocks of main memory
that comprise the packet. Packets may be discontinuous in main memory. Other channel in-
structions may be used to store packet-enable signals in main memory ~ad interrupt other pro-
cessors on the main memory bus, such as the MC68000 and 8X300 processors.

Signals may also be broadcast to all processors or to one or more groups of processors.
Broadcast of signals is used to start up the bus: the bus controller interrogates the micro-
computers on the bus to see what their serial numbers and types are, and assigns virtual ad-
dresses to the microcomputers., By assigning the same virtual address to two or more micro-
computers, these can be rigged to run synchronously through the same states. Packets may
also be broadcast to more than one microcomputer, but in this case the hardware takes no re-
sponsibility for ensuring that the receiving microcomputers are not busy with other packets.

If they are, they will be unable to process the packet-enable signal which they receive.
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V. MISCELLANEOUS ACTIVITIES

A number of project accomplishments and activities which do not fit directly into a specific
larger category are very briefly summarized here.

We have continued to develop our working relationship with other research groups, including
students and members of the M. [, T. faculty who are interested in distributed problem solving,
surveillance, and information distribution, One Masters 'I‘hesie;lf has been written, and we ex-
pect additional contributions from this relationship in the future, A number cf meetings have
been held with a group involving Lincoln, M.IL T. faculty, and students interested in distributed-
decision-making problems. The group includes a cross section of people with computer science,
artificial intelligence, system theory, estimation and control theory interests. As a result of
these meetings we have prepared an informal memo describing a somewhat simplified DSN sur-
veillance and tracking system problem which is based upon the use of idealized azimuth-only
sensors. We have also drafted another memo which gives a more detailed model for acoustic
azimuth sensors and for two-dimensional radars. Prof, V. Lessor of the University of Massa~=
chusetts, Amherst, who is also interested in distributed-decision-making problems, participated
in one of the meetings at M. L. T. and we are continuing discussions of issues with him.

Small amounts of acoustic data, some raw and some processed, have been given to
Prof. Jae S. Lim of M. L. T. and to DSN researchers at Stanford and Carnegie-Mellon University.
Prof, Lim is investigating two~dimensional Maximum Entropy spectral anialysis. The data sent
to Stanford will be used to check out their transfer of our ADAP software from PDP-41 computers
to a VAX, and will also be available to them as input for their own algorithms. A member of the
Stanford research team visited with us for three days to gain an understanding of our signal-
processing algorithms and requirements and to obtain information related to the transfer of ADAP
and the use of the data.

We have reviewed ongoing work at the University of Southern California Information Sciences
Institute in anticipation of developing a DSN self-location capability based upon measurems=nts of
ranges between nodes. This involved reviewing available documents, discussions with the prin-
cipals, and some familiarization with the software they have actually developed, We concluded
that their constructive approach to self-registration is a gocd point at which to start to develop
operational algorithms. Among the important issues which now must be considered are distrib-
uted implementation and protocols for that implementation, handling of errors including the
possibility of very lurge systematic errors resulting from multipath, how to handle absolute as
well as relative positions, and how to handle at least some moving units,

During this reporting period, it became necessary to physically move the office and lab~
oratory space of the DSN program within Lincoln Laboratory in order to provide adequate lab-
oratory and office space for the project. The new space is several hundred feet away from the
PDP-11/70 computer which provides most of the general computer support for the project. This
required the installation of cable and short-haul modems between the computer and thc new work
areas in addition to other routine preparation of the areas.

TR. P. Hughes, "A Distributed Multiobject Tracking Algorithm for Passive Sensor Networks,"

Masters Thesis, Department of Electrical Engineering and Computer Science, M.I.T.
{(June 1980).




Also, as has been planned for some time, the software system for the PDP-11 /70 was
converted from Version 6 to Version 7 UNIX during this time period, This conversion was re-
quired in order to make use of new and improved UNIX features and user-level tools as well as
to remain current with the mainstream of the UNIX community. The conversion included pro-
viding for ARPAnet service under Version 7 and, to our knowledge, we were the first Version 7
UNIX connected to the network., Other tools continue to bc converted and debugged in the new

environment as the need arises or bugs are detected.
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